Akcije

11th International Scientific Conference on Defensive Technologies - OTEX 2024
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati na Portalu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 9 od 19  
Back povratak na rezultate
2024, Weapon systems and combat vehicles - WSCV, str. 140-146
Optimization of single stage planetary gearbox parameters using genetic algorithm
(naslov ne postoji na srpskom)
Univerzitet u Beogradu, Mašinski fakultet, Srbija

e-adresamsedak@mas.bg.ac.rs, mrosic@mas.bg.ac.rs
Projekat:
Održivost i unapređenje mašinskih sistema u energetici i transportu primenom forenzičkog inženjerstva, eko i robust dizajna (MPNTR - 35006)
Razvoj metodologija za povećanje radne sposobnosti, pouzdanosti i energetske efikasnosti mašinskih sistema u energetici (MPNTR - 35029)

Ključne reči: planetary gearboxes; optimization; efficiency; genetic algorithm
Sažetak
(ne postoji na srpskom)
Planetary gearboxes are a mechanical devices consisting of multiple gears arranged in a circular configuration around a central sun gear. This layout enables an efficient gearbox with high torque in a compact design, thus making it well-suited for a wide range of industrial and military applications such as industrial motors, rotorcraft, vehicles, wind turbines, and more. However, when it comes to aircraft applications, weight and strength are essential considerations in the design process. Genetic algorithms are used to optimize the parameters of a single-stage planetary gearbox in order to achieve the necessary balance between weight, strength, and performance in aircraft applications. The study focuses on formulating the optimization problem in an appropriate way while also developing constraints that guarantee the effective functioning of the planetary gearbox. In order to effectively address this complex and multimodal constrained optimization problem, this paper suggests utilizing an enhanced genetic algorithm (NSGA-II), which is widely recognized as the most commonly employed evolutionary optimization technique. In comparison with conventional GA algorithm, the numerical simulation results demonstrate that the suggested method exhibits enhanced optimization performance in relation to the quality of the achieved solutions.

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/OTEH24027S
objavljen na Portalu: 11.10.2024.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka

Ciljevi održivog razvoja (SDG)

Glavne SDG klasifikacije

  • Pristupačna i čista energija (86%)

  • Industrija, inovacije i infrastruktura (4%)

  • Odgovorna potrošnja i proizvodnja (4%)

Opis Ciljeva